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Integrability test for spin chains 
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Departement de Physique, Univeait6 L a d .  Quebec, Canada GIK 7P4 

Received 9 December 1994. in final form 29 March 1995 

AbsbacL We examine a simple heuristic test of integrability for quantum chains. ?his test 
is applied to a variety of systems. including isotropic spin-I models with nearest-neighbour 
interaction, Porn-type, inhomogeneous spin-: chains. and a multiparameter family of spin-: 
models generalizing the XYZ chain, with next-to-nearest neighbour interactions and bond 
altemation. Within the lmcr family we determine all the integrable models with an o(2) 
symmetry. 

1. Introduction 

For Hamiltonian systems, the common definition of quantum integrability mimics the 
LiouviIlc+Amold definition of classical integrable Hamiltonian systems: a quantum system 
with N degrees of freedom is called integrable, if it possesses N non-trivial, functionally 
independent and mutually commuting conservation laws. 

For classical continuous systems, the proof of integrability usually amounts to displaying 
a Lax or zerecurvature formulation. Although this is not always easy, there are various other 
manifestations of integrability that can be probed, such as a bi-Hamiltonian formulation, 
non-trivial symmetries, prolongation structures or higher-order conserved charges (see e.g. 
[ 11). Furthermore, one can apply a systematical integrability test, based on the Painlev6 
property [2]. For classical discrete systems, there are related integrability indicators 131. But 
except for higher-order conservation laws, these integrability signals are no longer available 
for quantum chains. 

On the other hand, the integrability of quantum chains is usually demonstrated rather 
indirectly, by showing that the model can be solved by the coordinate Bethe ansatz or that 
the Hamiltonian can be derived from a commuting family of transfer matrices related to the 
Yang-Baxter equation. But these are only sufficient conditions for integrability. Moreover, 
testing these sufficient conditions is often not easyt. 

It is thus clearly desirable to design a more general, simple and efficient integrability 
test for quantum chains. Here we propose a simple test based on the existence of a local 
non-trivial three-point charge H3, the higher-order conservation law just above Hz, the 
defining Hamiltonian of the model. Locality means that the interaction involving a certain 
set of sites disappears when the distances between them become sufficiently large. We will 
indicate below why for quantum chains, one can expect that the existence of H3 should be a 
necessary and in some cases a sufficient condition for integrability. From the computational 

t Work supported by NSERC (Canada). 
: Note, however. that the Yang-Bater equation implies a relatively simple equation. known as the Reshetikhin 
condition. See section 2 for a discussion of this point. 
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point of view, the advantage of this simple-minded approach is that the number of possible 
candidates for the three-point charge is usually not exceedingly large, and they are often 
restricted by the symmetries of the system. 

We stress that the proposed test is heuristic. Its applicability in a large number of 
situations leads us to present it in the form of two conjectures. These conjectures, in turn, 
were motivated by observations that have not been proved in general. Thus, few rigorous 
results are displayed. Our aim is to try to pin down a simple integrability indicator, The 
application of the test to more examples will reveal its genuine value and/or its limitations. 
But the search for a simple integrability test is important. When modelling a physical 
situation in terms of a multi-parameter Hamiltonian, it  is of great interest to know whether 
the model is integrable for some values of the parameters. Even though the integrable point 
may not correspond to the most relevant physical situations, it provides a convenient starting 
point for a perturbative treatment of non-integrable models of interest. 

2. Conjectured integrability tests for quantum chains 

2.1. The clnss of models to be considered 

The test is formulated for the class of translationally invariant models with nearest-neighbour 
interactions. These models are defined on a lattice A w,hich is either finite with periodic 
boundary conditions (i.e. A = (1,. . . , N), with N + 1 

Let [S; )  denote a set of quantum operators (distinguished by the index a),  acting non- 
trivially only in a Hilbert space Vj. (We will assume in this work that all the Vi’s are finite- 
dimensional; in general they don’t have to be identical.) The full space of states of such 
chain is then the tensor product RjEA 5. The class of Hamiltonians under consideration 
bas then the following form: 
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1) or infinite (i.e. A = 2). 

where gj = g(Sj) describes interactions at site j and hj.j+l is some site-independent function 
of S,, S,+l which describes nearest-neighbour interactions. 

We stress that the restriction to nearest-neighbour interactions is not as severe as it 
might appear at first sight, since this class of models actually contains, when appropriately 
reformulated, any  model involving binary interactions with finite range. Indeed, any 
model with a finite interaction range ko (where ko = 2 corresponds to nearest-neighbour 
interactions) can be equivalently described in terms of nearest-neighbour interactions just 
by grouping together ko consecutive sites into a single site on which a vectorial spin-like 
variable would live. Similarly, any mode1 with a more general invariance under a shift 
j -+ j + j ,  can be made invariant with respect to a translation by a single unit, by grouping 
together j o  consecutive sites. 

2.2. Preliminary observations 

(i) If3 cannot be absenr due to a symmetry or a null-vecror. Since the early days of soliton 
theory, it has been clear that the existence of a non-trivial conservation law (beyond those 
associated with the standard conservation of m a s  or charge, momentum and energy) is 
a very strong indication of the existence of an infinite number of additional non-trivial 
conservation laws. But for continuous systems, either classical or quantum, one cannot 
focus the attention on the existence or non-existence of the conservation law with a degree 
just above the one which usually plays the role of the Hamiltonian. The reason is simply 
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that symmetry considerations can prevent the existence of H, for a set of values of n. Take 
for instance the KdV equation 

(2.2) 
for which U has degree 2 in the normalization where a, has degree 1. Due to a hidden Zz 
invariance, there are no conservation laws with densities of odd degree. More generally, for 
Toda systems related to Lie algebras, the values of n for which H,, is non-zero are related to 
the exponents of the corresponding Lie algebra [4]. But notice that when the conservation 
laws are calculated by a recursive method, the conserved densities associated with charges 
that vanish by symmetry are not found to be zero, rather they are total derivatives. 

As indicated above, these considerations apply for both classical and quantum systems. 
But in the quantum case, there is another possible source for the absence of a conserved 
charge of given order, which is that the density can be exactly proportional to a null vector. 
Again this is observed in the quantum mv case, where for special values of the central 
charge, the free parameter in the defining commutation relation, some conserved densities 
become proportional to null vectors of the Wrasoro algebra [5 ] .  

Now, our point here is that both these possibilities are absent in the case of quantum 
chains. In particular, it is clear that on the lattice there is no room for total derivatives. 
Furthermore, null vectors appear not to be relevant if the spaces V, are finite dimensionalt. 

(ii) Periodic spin chains whose integrability is rooted in the Yang-Barter equation have a 
non-zero H3. On the other hand, for systems whose integrability can be traced back to 
commuting transfer matrices, the conserved charges are obtained from the expansion of the 
logarithm of the transfer matrix 161 and I f 3  is never absent. This can be easily seen for 
fundamental systems 171, characterized by a Lax operator L,(h) proportional to the model's 
R matrix. The result actually follows directly from the boost construction described in 
sections 2.5 and 2.6. 

The existence of a non-hivial third-order charge can also be proved for a more general 
class of integrable models, characterized by the condition L,(O) = Pn0, where P.0 denotes 
the permutation operator and the index zero refers to the quantum space VO on which the 
matrix entries of L, act$. The second logarithmic derivative of the bansfer matrix 

ut +U,,, + ~ U U ,  = 0 

T(h)  = Trv,LN(h) ... L I ( l )  (2.3) 
becomes 

(2.4) 
The last two terms involve only nearest-neighbour interactions, while the first is a sum over 
triples of consecutive spins. If one excludes a pathological case in which all adjacent links 
commute, the three-point part of the charge defined above is non-trivial§. Note that the 
other two terms are absent for fundamental models. 
t Constraints imposed on the factor spaces Vi (i.e. realized via a projection onto some subspace of 6) may 
'project out' some charges of an integrable model-in other words some of the conserved charges evaluated in 
a restricted space of states may conceivably vanish. Such consVainl~ would thus have an effect similar to null 
vectors. However, situalions Like this can be avoided by considering the conservation laws in the full (unrestricted) 
Hilben space. 

Note that such an L matrix is not necessarily itself a solution of the Yang-Baxter equation. An example of 
such a transfer matrix, but which does not define a fundamental model, is provided by the vanafer matrix of the 
Hubbard model found by ShasVy [SI. 
5 For example. such a pathological situation arises for the 'chopped XXZ' model introduced in section 3. 
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2.3. A conjectured necessary condition for integrability of a quantum chain 

The above considerations motivate the following conjecture for the class of systems 
described by (2.1). 

Conjecture 1 .  A translationally invariant periodic quantum spin chain, with a Hamiltonian 
H2 involving at most nearest-neighbour interactions, is integrable only if there exists a non- 
vanishing local independent charge H3, which is a sum of terms coupling the spins of, at 
most, three sites, which commutes with HZ for all chain sizes N > 3. 

This conjecture implies then a simple test consisting in establishing the existence of such 
H3t. In particular, one may conclude that a spin chain is non-integrable, by demonstrating 
the non-existence of a non-trivial H3. On the other hand, if such a charge exists, the system 
is Likely to be integrable; but of course its integrability has to be proved indepehdently. 
Actually, it also appears that for a large class of systems (and, in particular, for the models 
considered here), the mere existence of H3 is enough to guarantee the existence of an infinite 
family of conserved charges in involution. 

Notice that there is a general class of quantum chains for which the existence of H3 
automatically ensures the existence of an infinite number of commuting charges. These are 
the self-dual systems satisfying the Dolan-Grady condition [IO], It includes, in particular, 
the Z,, generalization of the Ising model related to the two-dimensional Potts model. The 
formulation of this condition is reviewed in appendix A. 

2.4. Clarifying comments related to the formulation of conjecture I 

Some elements entering in the formulation of the conjecture deserve clarification 

(i) Independence of the charges. The charge H3 in the above conjecture should be 
independent of the Hamiltonian and of possible charges of lower order (such as, e.g. 
the components of the total spin). For general quantum integrable models, the issue 
of functional independence can be quite complicated; it is indeed a major difficulty in 
formulating a general definition of quantum integrability in a completely rigorous way$. 
However, functional independence of the charges can usually be easily verified for spin 
chains with short-range interactions: the leading term of H. contains n adjacent interacting 
spins; the leading terms of H. and H,,, for m # n being clearly distinct, the corresponding 
charges are linearly independent. Furthermore, such a cluster of n adjacent spins cannot be 
obtained from a product of lower-order charges (since that would also generate terms with 
n non-adjacent spins). 

(ii) Stability of the charge under a variation of the chain length. The last item in the above 
conjecture ensures that the existence of H3 should not be affected by a change N -+ N + k ,  
where k is an arbitrary positive integer. This stability requirement can be simply illustrated 

t A related integrability test has been studied in [9]. However, these authors mnfined their test to the search 
of one non-rrivial conservation law (not necessarily H3) in spin-f models, with the simultaneous existence of a 
ladder operator providing a recursive scheme for the calculation of the other conservation laws. This is certainly 
less general and less constructive than the test proposed here. 
$ Dropping the requirement of functional independence does not lead to a meaningful definition of integrability 
[I  I]. In lhe context of spin chains this can be m i l y  seen. Consider an isotropic chain, for which the Hamiltonian 
commutes with all the components of the total spin. Arbitrary powers of any of the spin components yield lhen 
a set of mutually commuting Mnserved charges. Removing the requirement of functional independence in the 
definition of integrability would therefore render any isotropic spin chain automatically integrable. 
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for the X Y X  model defined by the Hamiltonian 

(2.5) 

(where as usual periodic boundary conditions are assumed). This Hamiltonian commutes 
with any component of the total spin 

N s"=coi". 
i=I 

A simple calculation shows that for N = 4 the quantity 

' anv gher vi 

(2%) 

is conserved. H' is also conserved for N = 5 but not . L  e of N. The 
reason for this behaviour is that for N = 4 and 5,  H' can be regarded as a non-local charge. 
Such non-local charges can typically be obtained from powers of the local charges. More 
exactly, for N = 4 we have the following identity (modulo an additive constant): 

(2.8) SOS" = 2H + U'. 
Similarly, for N = 5 

SaS" = 2H + 2H' .  (2.9) 

However, for N > 5, H' is not related to SS' or other non-local charges and is no longer 
conserved. For N = 6 for instance, we have instead 

SUS" = 2H + 2H" (2.10) 

where 
N 

U" = C[ui . ui+z + ?ui I . ui+3] (2.11) 

contains contributions with one and two holes. Thus the conservation of H' is not preserved 
under the change N -+ N + 2; the same is true for H". This is actually typical for all 
such 'accidental' charges, whose conservation for some particular values of N is due to 
an accidental identity (relating them to non-local charges), which is true only for these 
particular values of N. 

(iii) Loculiry versus non-locality. The above example illustrates another issue: it is not 
always easy to distinguish the non-local charges (e.g. H') from the local charges (e.g. H) 
for finite chains. For an infinite chain, local and non-local expressions are quite distinct 
(the latter contain interactions between arbitrarily distant spins). On the other hand, for the 
X X X  model with N = 4,5, one hole in the expression of a 2-spin conserved law reflects 
'non-locality' ! However, as exemplified above, the form of those non-local charges that 
can be written as powers of local charges is strongly N-dependent: this property makes 
them easily detectable. Notice also that the local charges for a finite chain may be defined 
non-ambiguously from the densities of the first N charges of the infinite chain. 

i=l 
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2.5. A conjectured sufficient condition for integrability based on the boost operator 

The integrable points in a multi-parameter space of general spin-chain Hamiltonians can 
usually be simply characterized by the occurrence of a dynamical symmetry. Related to 
such symmetry is the existence of a ladder operator E, acting on the conservation laws as 

[E, Hn1= H ~ + I  (2.12) 

where H,, denotes a charge with at most n adjacent interacting spinst. This motivates 
the formulation of a simple conjectured sufficient condition for integrability, based on the 
existence of a ladder operator E, in conjunction with the presence of a non-trivial charge H3. 

Conjecture 2. A translationally invariant periodic quantum chain, with a Hamiltonian H2 
involving at most nearest-neighbour interactions, is integrable if there exists an operator B 
such that for all chains of length N > 3, [ E .  Hz] is non-trivial and 

(2.13) 

In contrast to the first conjecture, the approach here is more constructive: it indicates 
how H3 can be built, i.e. as [E, H z ] .  This constructive aspect presupposes that we can 
easily guess the form of B. In all the cases we have considered, such a E t u n s  out to be 
proportional to the first moment of an appropriately symmetrized form of the Hamiltonian 
Hz, i.e. with 

(2.14) 
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[ [ B ,  Hzl ,  Hz1 = 0. 

Hz = C h j . j + l  for hj . j+ l  symmetric in j ,  j + 1 .  
jeh 

E is found to be 

(2.15) 

The condition of commutativity of Hz and H3 assumes then a particularly simple form: 

C [ h j . j + ~  + hj+l.j+Z, [hj . j+l ,  h j + ~ . j + ~ l l  = 0. (2.16) 
j € h  

The derivation of this result is very simple. Starting &om 

=-E [hj,j+l,hj+l.j+21 (2.17) 
j € h  

one then enforces 

[H31 HzI = C[[hj-2/-I,hj-t,jI,hj.j+11+ [[hj-~.j~hj,j+ll,hj.j+~l 
I 

+ [ [ h j . j + l +  h j + ~ . j + ~ l .  h j . j+ l l  + [ [ h j + ~ , j + ~ ,  hj+z,j+31. hj.j+ll = 0. (2.18) 
Using the Jacobi identity, the first term on the right-hand side can be written in the form 
- [ h j - ~ , j , h j . ~ + i l ,  h j , j+ i ] ;  with the shift j + j +2 ,  it exactly cancels the fourth term. Then, 
by shifting j by one unit in the second term, we recover (2.16). 

From the Jacobi identity, this condition automatically ensures the existence of a second 
non-trivial conservation law H4 which commutes with Hz: 

[H41 Hz] = [[E, 5 1 ,  E21 = - [ [ H 3 ,  Hzl ,  E l  - [[Hz, E l ,  H31 = 0 .  (2.19) 
t Note thal we allow for the possibility of a linear combination of lower-order charges H,hn on the right-hand 
side of (2.12). 
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However, showing that [Hd, H31 = 0 and that higher charges commute with Hz requires 
additional information. For example, if it is known beforehand that the commutant of H2 
is Abelian, equation (2.16) actually implies the existence of an infinite tower of charges in 
involution. 

2.6. Relarion between conjecture 2 and the Reshetikhin condition 

It is known (see [12]) that the existence of a ladder operator is a direct consequence of the 
Yang-Baxter equation for nearest-neighbour interacting chains for which the transfer matrix 
is a product of R matrices (the so-called fundamental spin chains). But the conjecture is a 
priori independent of the Yang-Baxter equation and in principle there could exists models 
satisfying (2.16) and not the Yang-Baxter equation. Furthermore, equation (2.16) is easier 
to test that the Yang-Baxter equation for the related R-matrix. 

Actually, for fundamental spin systems, (2.16) can be viewed as a condition for the 
matrix 

(2.20) 

(2.21) 

for some quantity X .  This relation first appeared in [I31 (see equation (3.20)) and it is 
attributed to Reshetikhin. An explicit derivation can be found in [14]. The Reshetikhiin 
condition (2.21) is nothing but the local version of (2.16). It appears to be an anticipation 
of the boost construction of conservation laws. It is also pointed out in [13] that this 
equation is not satisfied by all integrable systems (which is by now understood from the 
fact that not all such systems are fundamental); in particular this is the case for the Hubbard 
model (in agreement with the conclusion in [I51 concerning the non-existence of a boost 
operator). 

In the rest of this work we examine the existence of a thud-order charge for a number 
of models. Some of the calculations were performed using MATHEMATICA. 

R(h) = PII + AH2 + 0 ( h 2 ) ]  

[h j , j+~ + hj+l.j+2, [hj,j+l. hj+l.j+211 = Xj.j+l - Xj+l,j+2 

to be a solution of the Yang-Baxter equation. This approach leads to the condition 

3. Example 1: spin-f chains with next-to-nearest neighbour interactions and bond 
alternation 

3.1. Definition ofthe model 

We consider a 10-parameter family of spin-; models, which contain, in addition to XE-type 
interactions, next-to-nearest neighbour interactions, bond altemation terms and a magnetic 
field coupling term: 

This is the most general spin-; model with interaction range shorter then two lattice units 
admitting bond alternations. To ensure translational invariance, we assume that the number 
of sites N is even. These models can be equivalently represented as nearest-neighbour 
interactions on a lattice A’, whose bonds correspond to non-vanishing interactions (see 
figure 1). 

A lattice with such a ‘railroad trestle’ topology has been considered in I161 (in the 
case where all the couplings are equal). Notice that the lattice in figure 1 also corresponds 
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2 k + 2  2 k t 4  

. . .  !.. 

2 k + 5  2 k -I 2 k + I  h ‘I 2 k + 3  

Figure 1. The lattice A’ corresponding IO the Hamiltonian (3.1), whose bonds correspond to 
non-vanishing interactions. 

to a generalization of (3.1) admitting bond alternation for next-to-nearest neighbours. A 
particular case of such bond alternation yields then the ‘sawtooth’ topology, which has been 
shown to possess an exact valence-bond ground state 1171. 

The models in (3.1) can be equivalently described by a Hamiltonian of the form (2.1). 
The structure of (2.1) is recovered if we express (3.1) in terms of the variables 

The family (3.1) contains many interesting systems, including some that are well known 
integrable models and some which are ‘exactly solvable’ in some sense. In particular, among 
the class of isotropic (globally su(Z)-invariant) models satisfying k = 0 and 

A, = A A’. = A’ Arra A” (3.3) 
for all a ,  the following special cases are covered by (3.1). 

(i) The Heisenberg ( X U X )  model (A’ = A” = 0): 
H2 = CAu,?uT+, . 

(ii) The staggered X U X  model (A” = 0): 
Hz = C[A + A‘(-~)’]U,?U~+~ . 

j E h  

(iii) The alternating X U X  model (A” = A = 0): 

(3.4) 

(3.5) 

(iv) The Majumdar-Ghosh model [ 181 (A’ = 0, A” = $ A): 

As is well known this model possesses an exact valence-bond ground state. 
For models invariant under global spin rotation around the z-axis, 

cos01 sinot U; 
( $ ) + ( - s i n e  cose)(u!) 

(in which case the global su(2)  invariance is broken down 10 0(2)),  the coupling constants 
satisfy 

Ax = A, A’, = A’, A“, = (3.9) 
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Some interesting o(2)-symmehic models that can be obtained from a specialization of (3.1) 
are as follows. 

(v) The XYZ model (,Ifn = A". = 0): 

Hz = X[Ax(~;~;+, + u / u / ~ ~ )  + A , u ~ u ~ + , ] ,  (3.10) 
j € A  

(vi) The Lieb-Schultz-Matis model with alternating Heisenberg and king bonds [ 191: 
A -1 -A '  -AI' - 1  

(3.11) 
A", = 0 x -  y -  x -  y - 2  

A, = (1 + U ) / 2  A', = (1 - U ) / 2  
with the Hamiltonian 

(3.12) 

(vii) The Hubbard model: 

(3.13) I ,  
1.x = A, = Atx = A', = A = 0 Allx = A''y = 1 Atz = hz (I 

with the Hamiltonian 

(3.14) 

The equivalence of (3.14) (for a lattice with an even number of sites) with the usual 
formulation of the Hubbard model 

(3.15) 

(where si and ti are two independent sets of Pauli mawices at site i) can be seen by redefining 
the spin variables in (3.14) as 

s; + UTj rj" + . (3.16) 

H = C[Sj"Sj",, + s;s;+, + $y+* + t;$+r + usjf;] 
j6.h 

3.2. Strategy of the test 

For the completely general anisotropic case, a natural candidate for the third-order charge 
involves only nearest-neighbour interactions on the the lattice in figure 1 and has the form 

j # )  ),,prUp u~~ 

' ((31 a1 ai 
+(@EL, + (-1) a,112*, , ,+z j + 3  (3.17) 
+(ao)a]029 + (-1)'01 0 , 0 p , ) ~ j  uj+1ai";3 

+(aa,,a2'a, C4) + (-l)'a'~~~,)ui"'u~~zu~~] 
where a$,iza3 and a$2a3 are arbitrary coefficients. We search for integrable systems by 
imposing the condition of commutativity of H3 with the Hamiltonian. This leads to an 
overdetermined system of equations for the set of parameters in H3. This system has non- 
mvial solutions only for special values of the parameters of the Hamiltonian. However, the 
analysis of this system is very cumbersome, since in the absence of additional symmetries, 
(3.17) contains 216 free parameters! Henceforth, we consider only three special situations, 
in which the analysis simplifies significantly: the isotropic case, the o(2)-sy"etric case, 
and the anisotropic case without bond alternation nor next-to-nearest neighbour interaction, 
i.e. the XIzh model. 
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One might consider other candidate charges, involving triples of sites other than those 
in (3.17). However, suppose that one cluster different from those appearing in (3.17) is 
introduced. Then (considering an infinite chain), to cancel the new terms arising in the 
commutator with the Hamiltonian, an infinite sequence of other clusters would have to be 
added, with the distance between spins in such clusters growing arbitrarily. This would 
violate the requirement of locality. me above reasoning is not so obvious, however, when 
some of the couplings vanish.) 

3.3. The X Y Z h  model 

We first consider (3.1) in the absence of bond alternation and next-to-nearest neighbour 
terms. The most general candidate charge H3 coupling three nearest-neighbour spins is 

H3 = f f a ~ a 2 a , ~ ~ ~ ~ ~ ~ $ ~ 2  (3.18) 

which contains 27 free parameters. By enforcing the commutativity of this candidate H3 
with the Hamiltonian, we find that if h # 0 and no two couplings are equal, the only 
solution is = 0 for all triples alazas. Thus there is no non-trivial charge Hs for 
the anisotropic XYZ chain in a non-zero magnetic field. This suggests thus that the XYZh 
model is non-integrable, in agreement with the fact that the Bethe ansatz solution for the 
XE model cannot be generalized to the case with a non-trivial magnetic field. 

3.4. The isotropic case 

In the isotropic case, the most general third-order charge involving only the nearest 
neighbours on the lattice in figure 1 has the following form: 

j E A  (I,=X.g.i 

H3 = E C o b c [ ( f f  -k (-l)’(Y’)UyU:+,U;+z+ ( B  4- (-1)’fl‘)UyU:+zU;+3 

j € A  

(3.19) 

where u , f l , & y  and their primed variants are arbitraq parameters. Solving the 
commutativity condition [Hz, H3] = 0, we find that (for N > 8) non-trivial solutions 
(for which not all parameters of H3 are equal to zero) exist only in two cases: for the X Y X  
model (A’ = A”), with the solution (Y # 0, B = ,9‘ = 

H3 = ~ f f & b c ~ ~ $ + t $ + z  (3.20) 

and for A = A‘, which corresponds to two decoupled X X X  models on the even and odd 
sublattices (the solution is then y ,  y‘ # 0 and all other parameters of H3 equal to zero). 

These results suggest that the only integrable isotropic models within the family (3.1) 
are of the XXX type. In particular, the Majumdar-Ghosh model, the alternating XXYmodel, 
and the staggered X X y  model? all fail the test of the existence of H3 and thus seem to be 
non-integrable. 

+ts + c-l~’s’,u~up,,u;+3 + ( y  + (-lVY’)uj o b  u,+zuj+41 c 

= f l  = y = y‘ = 0, i.e. 

j E A  

t Note that in the continuous limit the altemafing tenn corresponds to vg in the \vzNw model P O ]  with a level-one 
affine su(2) spectrum generating algebra g stands for the basic field in the wzNw model. a 2 x 2 matrix in the 
SUR) case. trg turns out to be an integrable permrbation of this w m  model [21]. However, the staggered XXX 
model in the continuous limit gives the WNW model perturbed by both vg and the marginal current-cunent tenn. 
Together, there WO pentubations %e incompatible with integrability. Note also that for 1 = &A‘ the staggered 
XXY model degenerates into a pathological ‘choppd X X T  chain consisting of dkjojoint bonds (see section 3.5 for 
a discussion of a similar case). 



Integrability test for spin chains 4787 

For N e 8 there exist non-trivial solutions for H3 of the form (3.19). Let us illustrate 
this in the case Ai = 0. when the Hamiltonian (3.1) contains only nearest and next-to-nearest 
neighbours: 

H 2 = H + p H '  (3.21) 

where p is an arbitrary parameter, and H and H' are given by (2.5) and (2.7), respectively. 
For N = 5 we find that the X Y X  charge (3.20) commutes with (3.21). Thk is a consequence 
of the 'accidental' identity (2.9) holding for N = 5. In other words, for N = 5 the next- 
to-nearest interaction is a 'non-local' charge (related to the square of the total spin), which 
commutes with all the X X Y  charges. For N > 5 this solution disappears (the three-spin 
xxll charge no longer commutes with the Hamiltonian (3.21)). Similarly, for N = 6 there 
is a one-parameter family of solutions 

(3.22) H3 = H:" + ~ F 3 . 1  - i ( p  + f iu - u)F& 
where U is an arbitrary parameter, and? 

For N = 7 there is another solution: 

H3 = HfXx + pF3.1 - p*F;,, , 

(3.23) 

(3.24) 

(3.25) 

Similar accidental non-local three-spin charges, whose form changes with N ,  exist in fact 
for all N ,  but it is only for N c 8 that they 'look local', i.e. can be put in the form (3.19). 

3.5. The o(Z)-invariant case 

We are searching again for a non-vanishing charge H, of the form (3.17). The requirement 
of the o(2) invariance imposes a number of restrictions on the parameters a$;,, and a'(i) Ot(120,' ' 

aur = CYxsx = azs* = asJx = ax),J - - azu = ax, = azrr = ayzz = CYrxs asxy = 

and 

CYSXI = - axrr, azyx = -az.xy, ~ r z y  = -ayz&yzy = c ~ x u ,  CU,, = aZyy, a x x r  = ~ y y , .  (3.27) 

As a result, the number of free parameters in H3 is now decreased to 56. Again one is 
looking for the values of these parameters allowing for the existence of a non-trivial solution 
(persisting when N is increased). This system is best analysed with a computer. The results 
are given below!. 

- (3.26) - CYyxx = ax,, = CYsys = 0 

If A: is not zero, a non-trivial solution for H3 exists only in two cases: 
(i) for two decoupled X X Z  models on two disjoint (even and odd) sublattices: (Ax = 

A; = A, = A;); and 

t F i 2  is the s y m e v i c  p a l  of lhe quantity F3.z introduced in [15. U]. 

at each site are explicitly excluded from consideration. 
Now that tiivid o(Z)-symetric models with Hamiltonians involving only the z-components ofthe spin variables 
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(ii) the Hubbard model: (A, = Ai = A: = 0, Az = S;). The solution for the charge 
H3 is then 

which can be translated, using (3.16). into the usual expression for the third-order charge 
in the Hubbard model [8, IS]. 

If A: is zero there are more possibilities. non-trivial solutions for H3 exist in four cases. 
These are: 

(iii) the XXZ model: A; = A: = A: = 0; 
(iv) the staggered XX model: A, = A i  = A: = 0; 
(v) the staggered X X Z  modelt A, = Ai  = A: = 0; and 
(vi) the model with alternating X X Z  and king bonds: Ax = &Ai .  
The three-spin charge obtained for the X X Z  model is 

H3 = ~[h,(u;u;;lu;+2 - u;u;+lu;+* + u;u;+lu;+2 - u;u;+lu;+2) 
j e h  

+AA+$+1$+2 - uj J Oj+l 2 U? /+2 )I 

Hz = - y ( A  + A'(-l)j)(u;u;+l +U;.;;,) 

in agreement with [6, 151. 
For the staggered XY model [NI 

j e A  

(3.29) 

(3.30) 

the three-spin charge obtained via OUT test is identical to the XX charge, that is 

H3 = ~acuj'u:,luj+2 4- u;Uj+lu;*2) + /3(u~u;+lu;+z - u;u;+lu;+z) (3.31) 

where 01 and /3 are arbitrary coefficients. Another indication of integrability of this model 
is provided by its continuum limit, which corresponds to a theory of free massive fermions 
[251. We present in appendix B a simple direct proof of the integrability of the lattice model 
(3.30) by exhibiting a family of mutually commuting conservation laws. 

j € A  

For the staggered XXZ model, defined by the Hamiltonian 

H~ = ~ r A r z ( - i ) j ( q ~ , ? + l  t A~~;~;~~I (3.32) 
j s A  

the three-spin charge obtained from the test has the following form: 

H3 = z[Az(-1)'(du? / J * I  U: J+z - U/U;+~U;+~ + U ~ U ~ + ~ U / + ~  - U,?U~+,U~+~) 

j e A  (3.33) 
+A/(u;uj+luj+2 J - u;uf+lu;+2)l. 

This charge can be also obtained using the boost operator as [ E ,  Hz]. Note that the 
transformation 

-+ UZjil S --f --f utj Uij  + (3.34) 

t This System is related 10 the two-dimensional Ashin-Teller model, see p31. 
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which corresponds to a spin rotation by n/2 around the z-axis restricted to odd sites, 
establishes the equivalence of the staggered XXZ chain with the model 

j E h  

This is a particular case of the XXZ model with Dzyaloshinski-Moriya inteiaction [26]: 

where J,, Jz  and D are arbitrary parameters. Integrability of (3.32) follows then from the 
integrability of (3.36), which has been proven in [27]. Note also that the model (3.36) is 
not oQ)-invariant, and, by a spin rotation (3.8) with a suitably chosen angle U, it may be 
transformed into the anisotropic Dzyaloshinski-Moriya system: 

(3.37) H2 = c[Dxo;o;;l + D~o,?u;+l + Dzo'u' I ,+I  ] ' 
j s h  

The model with alternating XXZ and king bonds 

(3.38) . ,  
N I L +(A* - A i ) 4 j + i 4 j + z  + A,o,uj+zl 

which is a slight generalization of the LieMchultz-Mattis model, presents certain 
peculiarities. The model has been diagonalized in [I91 (for A", = 0, A, = AIz = 4, Ar = 
(1  + U)/2,h', = (1 - U)/2 ) .  As observed in [19]. a convenient basis is provided by 
the eigenstates of Lj = u2i + u ~ j + ~ .  Consider then subspaces of the space of states 
corresponding to a particular sequence {Mj ] of the eigenvalues of the third component of 
the L,. Since the LieMchultz-Mattis-type Hamiltonian (3.38) commutes with each of the 
Lj it does not mix different subspaces; in other words it is block-diagonal in this basis, 
and can be diagonalized separately in each subspace. The projection operators onto the 
subspaces corresponding to different sequences {Mj } provide then a mutually commuting set 
of operators, all commuting with the Hamiltonian. Therefore, (3.38) satisfies the definition 
of integrability given in the introduction; admittedly the nature of these conserved charges 
appears a bit unusual and somewhat trivial. 

The explicit form H3 charge found via the the test is 

j € A  

where (Y and f l  are arbitrary coefficients. Interestingly, not only does the above sum com- 
mute with (3.38), but each term in it is separately conserved. Clearly, all these terms can be 
expressed as linear combinations of the projection operators discussed above. Let P!"' de- 
note a projection onto the states with ~j = mj.  Then u;lu;j+l = i ( ~ : )  + q(-I) i ~ ( ' 1 )  I 

and Lj = Py) - P,(-'). In particular, in the 2"*-dimensional subspace where all the M; 
are zero (which is the sector containing the vacuum), (3.39) vanishes. 

The block-diagonal nature of the Hamiltonian (and hence the existence of the set of 
commuting projections) is manifestly preserved by the addition to (3.38) of an arbitrary 
interaction involving only the z-components of the spin variables. Finally, we note that 
a particular case of (3.38) with A, - A; = Af = 0 provides a pathological 'chopped 
xxz' system, consisting of N / 2  disjoint XXZ bonds, with all neighbouring links trivially 
commuting. 

Summing up, it appears that apart from the models (+(vi) described above, all other 
o(Z)-symmetric models within the family (3.1) are non-integrable. Among the integrable 



4790 

models, there are three situations in which the first moment of the Hamiltonian (the boost) 
acts as a ladder operator for conservation laws: the XYZ chain (cases (i) and (iii)), the 
staggered XX model (iv), and the staggered XYZ chain (v). 

M P Grabowski and P Mafhieu 

4. Example 2: isotropic spin-1 chains 

Consider now a class of isotropic spin-1 chains with nearest-neighbour interactions. The 
most general Hamiltonian contains a bilinear and a biquadratic term 

f f 2 W  = Crs;s;+, +8(s;sp+I)z1 (4.1) 
j € A  

where the S,” are the 4 2 )  spin-1 matrices, acting non-trivially only on the jth factor 
of the Hilberi space Bj C3. For convenience we choose the representation in which SL is 
diagonal, i.e. 

0 1 0  0 -1  0 1 0 0  SX=--(1 1 0 1 )  S F = l ( l  0 i l )  S z = ( O  0 0 ) .  (4.2) 

A 0 1 0  A 0  1 0 0 -1 
Using the identity 

where 

DYb E SYS,” + S f q  

HZ(B) = C[(l - Bf)s;q+;, + B;D,.bD;:l]. 

(4.4) 

(4.5) 

the Hamiltonian can expressed as 

j € A  

The boost operator yields the following candidate for the b’3 charge: 

H,(B) = C E ” ~ [ ( - ~ +  28 - ,6’$)S;Sp+lSf+z - SziD;dS,”+IDf$ 
j E h  

+(-8 + Bzi) (D,”dDf . lSf+z  +qD,”$lD,”;z)]. (4.6) 
The commutator [HZ(~), &(8)1 vanishes only for 8 = &l or 6 = CO; these cases have 
already been identified as integrable in the literature. For 8 = -1, (4.1) reduces to the 
isotropic version of the Fateev-Zamolodchikov chain, associated with the 19-vertex model 
1281, whose integrability follows directly from the Yang-Baxter equation. For 8 = 1, 
equation (4.1) describes the Sutherland su(3) symmeiric chain [29], whose Hamiltonian can 
be rewritten in terms of the Gell-Mann matrices I”: 

&(l) - crpfp+I. (4.7) 

H3 = - y f ~ b c t ~ f j + l I ; + * .  (4.8) 

j € A  

It can be solved by the nested Bethe ansatz [29] and is also related directly to the Yang- 
Baxter equation. Note that in this case, H a ( ] )  can also be written in the form [I51 

j s A  

In the limit + CO. (4.1) reduces to a system with purely biquadratic interactions, whose 
integrability has previously been established in 1301. 

For the spin-1 models, (4.1) with finite B # 5~1,  the boost operator does not produce 
a conserved quantity. Furthermore, as we show below, there exists no non-trivial local 
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conserved charge involving up to three nearest neighbours. The most general expression 
for such a charge would have the form 
H3 = ~ [ a l E n b C S ~ S ~ + l S ~ + 2  + ~ Z E ’ ~ ~ D ; ~ D $ , S ~ + ~  + a 3 ~ ~ ~ ~ S ; D j $ ~ D f &  

+ a & b S D ~ d S ~ + l D ~ ~ 2  + a5DYbD;b;, D;$ + a6S;Sj+, D;$ 
jsh 

+a7DybSj+lS;i2+ asSPDy~,SP,2+a,SpSp+l + ulo(Sj’S~+~)*l. (4.9) 
where the ai are undetermined coefficients. Enforcing the commutativity of H3 with the 
Hamiltonian, we obtain as usual a number of constraints on these coefficients. In particular, 
the vanishing of the four-spin terms in this commutator requires 

a2 - a3 = as = a6 = u7 = ag = 0 (4.10) 
and 

aZ=u4=O if j 3=0  

al = (1 + 4/pZ - 4/B)a4 a?=(-1+2/p)u4 if j 3 # 0 .  
(4.11) 

The above conditions means that in order for H3 to commute with Hz, its threespin part 
must be proportional to the commutator of the boost and Hz (both for f? = 0 and f? # 0). 
The vanishing of the terms with two and three spins in the commutator imposes two further 
restrictions. First, the two-spin part of must be proportional to the Hamiltonian Hz. 
Second, unless f?’ = 1 or 6 = ca, the three-spin part of H, must be trivial. 

The non-existence of H3 for (4.1) with finite j3 # f l ,  suggests that all these models are 
non-integrable. In particular, the bilinear system ( j 3  = 0), as well as the one with j3 = 1/3, 
for which there exists an exact valence-bond ground state [31], all fail the above test. 

It should be added that the necessary condition (2.21) for having a quantum chain related 
to a solution of the Yang-Baxter equation has been examined for isotropic spin-s chains with 
s c 14 in [14, 321. In particular, these authors found that the only spin-1 systems satisfying 
(2.21) are j 3  = hl and j3 = CO. As we have discussed above, this implies that for other 
values of j3 the Hamiltonian (4.1) cannot be a fundamental model. But apriori there might 
exist integrable but non-fundamental models for j3 # f l ,  CO. Our results, showing that there 
is no non-trivial three-spin charge. provide much stronger evidence for the non-integrability 
of all the isotropic spin-l models with j3 # f l ,  W. It would be interesting to perform a 
similar analysis for s > 1; such analysis is however much more complicated for higher s. 

We end this section with a short remark on the general spin-s bilinear system. Is 
it possible that this system is, by a bizarre accident, an integrable fundamental model for 
some values of s? This has been answered negatively in 1321 for all s < 100, using computer 
algebra. Here we present a simple calculation showing that for the bilinear systems, the 
boost operator can never produce a conserved quantity for s # $, which thus excludes the 
possibility of such an accident. Acting on the Hamiltonian, the boost operator generates a 
candidate for the three-spin charge of the form 

(4.12) H3 = Ce““ S,” S,”+, S;+2 . 
j e n  

The commutator of this quantity with the Hamiltonian is then 

[H3, H7.1 = Z[Dj”SY+lS,”,, - DYSP+ISP+2 + SpSj”,,D& - SpS,”+l D$] .  (4.13) 

The vanishing of this sum requires that all the terms containing spins in an arbitrary cluster 
vanish separately, which is not the case in general. The sum can vanish only if the terms 
cancel two by two, which is possible only if Dab - gab, a condition which is not true unless 

j E h  
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s = i. Therefore, the bilinear Heisenberg chain is an integrable fundamental model only 
fors = 4. 

5. Example 3: Potts models 

In this section we consider the class of Hamiltonians 

M P Grabowski and P Mathieu 

N-I 

where Zj &id X j  are N x N matrices at site j with entries (Z,)mn = exp[2in(n- I) /N]6, , , . ,  
( X j ) m , ,  = 6,,.+1. This class of Hamiltonians contains, for a particular choice of the 
parameters, the integrable chiral Potts model [33]: 

exp[i@(2k/N - I)] 
sin(nk/N) 

exp[i@(2k/N - I)] 
= A sin(nk/N) 

f f k  = (5.2) 

with 

cos@ = l C 0 S  9. (5.3) 
Note that there is also another integrable model within the class (5.1), corresponding to the 
choice wz = BZ = 0 (which can be in fact generalized to the inhomogeneous case [34]). For 
@ = 9 = H / Z ,  (5.2) reduces to the superintegrable model of Gehlen and Rittenberg [35]. In 
this case, there exists a recursive construction of conserved charges based on the Onsager 
algebra 1361 generalizing the Dolan-Grady [lo] condition. In particular, the three-point 
charge in the superintegrable case is given by 

(5.4) H3 = [ H ,  [fi, HI1 + [fi. [ H ,  811 + NZ(AH + xi) 

H~ = H + i f i  (5.5) 

where, in the notation of appendix A, 

with H = E,,,, E,"=;' ( Y ~ Z ~ Z ; ' ; ; ~ ,  and A = xjeA Et;" aXXf. 
In the following we will investigate (5.1) in the case where none of the coupling 

constants vanish ffk, f3k # 0. With Hx as a candidate, we will consider a multiparameter 
modification of (5.4), containing the same types of terms, but now with arbitrary coefficients. 
For N = 3 this leads to 

H3 = ~ I a : ' ) ( Z j Y j + ~ Z j + d ~  + a f ) ( Z I Y ; + l Z , + ~ ) k  + ~ ~ " Z ~ X , + I Z , " ~ ~  
N - l  

j E h  k=l 
WZkXZ ZN-k (n 1 N-k  (6) k N - k + a O ) y k Z N - k  

+'k j j+1 ,+2 +'k ' jZ j+l  ' j q + l  k j j + l  

+af'(Zjy;+l)k + ~ ~ " ( Y ; z ~ + ~ ) '  + Q')yXy!'-* I )+I + k a(*l)y!ky?"k I ~ + l  

+ a f z ) ( Y , Y ~ + l ) k  + U : ' ~ ) ( Y ; Y ~ + ~ ) ~  + o f 4 ' x ? ]  I (5.6) 

where a!) are arbitrary coefficients and the N x N matrix 6 is defined as I;. = X , Z j .  
Calculating the commutator of this candidate Hs with the Hamiltonian (5.1), we find that a 
non-trivial solution for H3 exists only if the parameters of the model satisfy the relation 

As shown in (331, the most general solution of this relation (modulo symmetry 
transformations in the space of couplings) is given by (5.2). Therefore, the N = 3 chual 
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Potts model satisfies conjecture 1. The same conclusion may also be obtained for N > 3.  
The non-existence of non-trivial solutions to [Hz, H31 = 0 when (5.7) is not satisfied, 
suggests that the chiral Potts model is the only integrable system within the N = 3 family 
(5.1) with couplings 011, ciz, p i ,  p z  # 0. However, to rule out a possibility of other integrable 
points within (5.1) would require an ansatz for a three-point charge more general then (5.6); 
such an expression, even for N = 3, may contain several hundred free parameters, making 
the analysis extremely cumbersome. 

Note that a ladder operator for the Potts model (5.1) exists only in the critical case 01k = 
p k  = 1, where the infinite chain Hamiltonian can be written down, modulo constants, as 

where 
N-1 N-1 

uj = C("Xj)k u;+~/Z = C ( w m ~ j ~ ; ; l ) '  j E z (5.9) 
k=O k=O 

with w = exp[Zin/N] and m an arbitrary integer. (The operators U, generate a Temperley- 
Lieb algebra.) In this case the three-spin charge H, can be obtained by the action of the 
first moment of the Hamiltonian density as [ E ,  [ E ,  &]It. 

6. Example 4: Inhomogeneous spin-; models 

Conjectures 1 and 2 have been formulated for a class of models with translationally invariant 
(i.e. periodic) nearest-neighbour interactions. As already mentioned, many models which 
originally do not satisfy this requirement may be reduced to such a form by grouping 
together spins at several neighbouring sites in a single vector-like spin variable. However, 
for completely inhomogeneous models, periodicity of the interaction cannot be recovered 
by this procedure. Nevertheless, the H3 test seems to remain valid for such systems. In 
this section, this will be illustrated in the context of the totally inhomogeneous Ising model 
[371. 

We consider the following class of Hamiltonians: 

Hz = x[uj~ ,?u,?+~ + hju'] (6.1) 
j c A  

where uj  and hi are arbitrary constants; we will assume that all of them are non-vanishing. 
We look for a three-spin charge of the form 

H3 = ~ [ a j u f u ; + , u ~ + z  + bju,!u,?i, + c j u f ~ ~ + ~  + dju;]. 
j E A  

(When the couplings are j-independent this charge reduces to the three-spin charge of the 
homogeneous Ising model.) The vanishing of the commutator [ H I ,  H31 leads then to the 
following relations: 

t Note that [ B .  Hz] is a two-spin charge (which is obviously different from Ihe Hamiltonian (5.8)).  commuting 
with all the other charges. A deformed version of fhis charge is also conserred for lhe general chiral Polls model. 



4194 

The first two equations are solved by taking 
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(6.4) b .  j - - -a .  j-I h .  j + l / u j - l  

Equation (6.3) allows for the successive determination of the aj for all points of the lattice 
starting from some given site, e.g. from at .  For a finite chain, one must also check the 
compatibility of this solution with periodic boundary conditions. For a chain of M sites, 
the first M - 1 equations in (6.3) suffice to express (a?, a3, . . . , n u )  as a function of a , .  In 
particular, one obtains a y  = axhM+luM/(h2uz). which is indeed compatible with the last 
equation ( j  = M )  in (6.3) since hM+l = hl.  

Substitution of (6.3) and (6.4) in (6.2) yields a system of 2M linear equations with 
2M unknowns (cj. dj).  Since the determinant of this system is (-)Mll&ujhj, the solution 
always exists, provided that none of the couplings vanishes. Therefore, there is a non-trivial 
three-spin charge for the totally inhomogeneous model (6.1). This is not surprising as this 
model is well known to be integrable, being equivalent to a free fermion system [24]. 

One could also investigate a more general class of Hamiltonians, i.e. totally inhomoge- 
neous XYZh models. In the truly inhomogeneous case, a non-trivial solution for If3 may be 
found only for the inhomogeneous king model (6.1) and the closely related inhomogeneous 
X Y  model. This suggests that these are the only integrable models in this class. 

7. Concluding remarks 

The simple integrability test considered in this work appears to be applicable to a rather 
general class of quantum chains. However, the range of applicability of the conjectures 1 
and 2 has not yet been determined rigorously. Regardless of that, this simple method seems 
to be a useful heuristic tool. 

Here the test has been applied to several types of models. Even though no new integrable 
points have been found, the positive aspects of this analysis should be emphasized. First of 
all, the test has been applied to a class of models that has been extensively studied in the 
past and it would have been surprising to find many new integrable systems. Our simple 
criterion allowed us to recover rather easily all the known integrable cases. Futhermore, 
apart from those integrable chains identified here, it strongly indicates the non-existence of 
other integrable models among those falling within the class studied. 

It may be worthwhile to use the test to Q to identify integrable models within other 
physically relevant families of models. In particular. the completely anisotropic case of 
the 10-parameter family considered in section 3 remains to be studied in detail. However, 
we do not expect that it  will reveal new types of integrable systems, beyond anisotropic 
generalizations of the systems found in the 0(2)-symmetric case. In particular, we expect 
that the X Y Z  chain, the staggered X Y  model, the staggered XYZ chain (with the x y  part 
alternating in sign) equivalent to the Dzyaloshinski-Moriya system (3.37), a generalized 
Lieb-Schultz-Mattis model, and a generalized Hubbard model (consisting of two copies of 
the X Y  chain interacting along their z components) are, up to a relabelling of variables, the 
only non-trivial integrable anisotropic models withim the family (3.1). Another interesting 
area of application is provided by the SU(N)-invariant chains. Recently, all the isotropic 
SU(3)-invariant chains satisfying the Reshetikhin condition have been identified in [38]. It 
would be interesting to determine if these are the only ones with non-vanishing H3. 

The present analysis focuses on models whose spin variables define an associative 
algebra. If one admits non-associative algebras, there exist infinite chains with an infinite 
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number of conservation with higher-order charges not commuting among themselves. The 
octonionic chain found recently [39] is an example of such a chain. But because the mutual 
non-commutativity of the higher-order charges is rooted in the failure of associativity (which, 
in particular, invalidates the Jacobi identity), these models might be regarded as integrable 
in some sense (to be precise). Granting this generalization, such systems may be also 
conjectured to be identified by the existence of a non-zero charge H3. 

Conjecture 1 could be generalized in a natural way to include even models with long- 
range interactions [40], for which there seem to be no ladder operator. We would then require 
that if a Hamiltonian HZ is given by a sum of two-spin interactions, there should exist a 
conserved three-spin charge H3. Observe that for models with long-range interactions, the 
leading term in H, is also characteristic: although then interacting spins in the leading term 
are no longer adjacent, the prefactor specifying the interaction of these n spins is distinctive. 
But, for these models, there can exist independent non-local charges also for finite chains 
(see e.g. [41]), and again it could be less obvious at first sight to assert that a three-spin 
quantity is not a product of lower-order charges. The analysis of models with long-range 
interactions will be reported elsewhere. 

Finally, we mention a completely different integrability test for spin chains based on 
the properties of the n-magnon excitations of the ferromagnetic vacuum, which has been 
conjectured by Haldane [42]. In spin-s chains the bound-state n-magnon dispersion branches 
extend over min(N, 2s) Brillouin zones and integrability manifests itself in that all branches 
are real (i.e. lie outside the spin wave continuum) and are continuous through the mne 
boundaries. This integrability criterion has been investigated for 2-magnon excitations in 
spin-s chains in [43. 441. In particular, in 1431 the Haldane criterion was used to obtain a 
relation between the parameters of a class of isotropic spin-s Hamiltonians. This relation 
defines then a one-parameter family of models, supposed to be integrable. But it contains 
only two out of the four known fundamental integrable systems fors  = $ [14]. Neither the 
su(4) invariant chain [29] nor the Hamiltonian HI/  of (321 belong to it. And apart from 
two points (describing the Bethe ansatz integrable system [45] and the chain related to the 
Temperley-Lieb algebra [4fj-481), the other models within the above one-parameter s = 
family axe not fundamental integrable systems, and are very likely to be non-integrable. 
Thus the condition in [43] tums out to be neither a necessary nor a sufficient condition for 
integrability. Presumably, further constraints should follow from the analysis of n-magnon 
excitations with n z 2. A better understanding of the Haldane criterion, as well as its 
relation to the test proposed in this work, is clearly needed. Note that the former approach 
implies a choice of a particular vacuum, while the H3 test is insensitive to the ferromagnetic 
or antiferromagnetic character of the model. 

Appendix A. The Dolan-Grady integrability condition for self-dual systems 

For self-dual quantum chains, there exists a simple suflicient condition for integrability, due 
to Dolan and Grady [lo]. This condition actually applies to any type of self-dual system, 
discrete or continuous, and defined in any number of spacetime dimensions. These systems 
are. described by a Hamiltonian of the form 

where fi is th_e dual of H ,  with duality being defined as any non-trivial linear operator with 
the property fi = H .  If such Hamiltonians satisfy the relations 

( A 4  [H, [ H .  [H, fill1 = 16[H. fil 
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there exists a (potentially infinite, for infinite systems) family of conservation laws and these 
can be constructed systematically. We stress that this sufficient condition for integrability can 
be equivalently regarded as the requirement of the existence of a charge H3 of a particular 
form. We have thus a neat situation here in which the existence of a third-order charge 
H3 guarantees the existence of an infinite family of conserved charges. Unfortunately, 
the applicability of this condition seems rather limited. Condition (A.2) appears to apply 
only to the Z. generalization of the king model defined in [35]. Systems satisfying (A.2) 
are sometimes called superintegrable and the underlying algebraic structure is the so-called 
Onsager algebra [36], 1491. 

On the other hand, many systems are self-dual in the above sense, but they do not 
satisfy (A.2). For example, the H X ~ Z  Hamiltonian is self-dual, as it may be put in the form 

M P Grabowski and P Mathieu 

HXYZ = UHrz + BRYZ 6 3 )  

where 

where u/ are Pauli spin matrices acting non-trivially only on the site i of the lattice A. The 
duality is defined by 

(A.5) 5% e? 5 2  j - - j .  - uz 
I -  I I J  

However, condition (A.2) is not satisfied unless Ay = 0 (in which case (A.l) reduces to the 
king model Hamiltonian) or A, = 0 (the XY model). 

Appendix B. Integrability of the XX staggered model 

The conserved charges for the XX staggered model 

Hz = + A’(-l)’)(~;u,&~ t u;u/+,) (B.1) 
/EA 

can all be expressed in terms of the densities 

(B.2) 
defined for n > 2. In terms of these quantities, the scalar and pseudoscalar conserved 
charges [151 of the XX model are 

018- a z  B en,j - uj ujtl . . . cj;n-2uj+n-l 

and 

= + e$ n odd. 
j E A  

We also define 

(B.4) 
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The conserved charges of the staggered XX model contain two families Hi*). For n odd 
these charges coincide with the AX charges: 

Mutual commutativity of the charges HL*) as well as their commutation with the staggered 
XX Hamiltonian (for [AI even) can be verified directly as in 1151. Note also that the boost 
operator 

has the ladder property: acting on (3.30) it produces the scalar part of (3.31). 

transforms into the two-spin pseudoscalar charge ki-’ of the XX model 
Under the transformation (3.34), the alternating art of the staggered XX Hamiltonian 

where 

(B.lO) 

This is a special case of the Dzyaloshinski-Moriya interaction 1261. 
&ansformation (3.34) can be interpreted as a duality in the sense of (A.l) if we define 

Notice that 

uzj+l - x  = iuzj+i Y u2j+i -I  = -iuij+l 

H = AlhF) + 12hi-l + 13k:-) +A,&++’ 

(where the factor i has been intrcduced in order to have 
hi-) = ikp). One may then consider a general Hamiltonian 

= U). Then ip) = ik-) 2 and 

(B.11) 
where 11, 12, 1p and 14 are arbitrary constants. This Hamiltonian is integrable, as can be 
seen from the existence of an infinite family of conservation laws, given again (for n odd) 
by (B.6). Notice that (B.11) is self-dual for 1 1 1 4  = Azh3; however, it does not satisfy the 
Dolan-Grady sufficient integrability condition (A.2). 
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